
SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry,
Illumination, and Material Estimation

Jesus Zarzar
KAUST

Bernard Ghanem
KAUST

Abstract

We present a novel approach for digitizing real-world
objects by estimating their geometry, material properties,
and environmental lighting from a set of posed images with
fixed lighting. Our method incorporates into Neural Ra-
diance Field (NeRF) pipelines the split sum approximation
used with image-based lighting for real-time physical-based
rendering. We propose modeling the scene’s lighting with
a single scene-specific MLP representing pre-integrated
image-based lighting at arbitrary resolutions. We achieve
accurate modeling of pre-integrated lighting by exploiting
a novel regularizer based on efficient Monte Carlo sam-
pling. Additionally, we propose a new method of supervis-
ing self-occlusion predictions by exploiting a similar regu-
larizer based on Monte Carlo sampling. Experimental re-
sults demonstrate the efficiency and effectiveness of our ap-
proach in estimating scene geometry, material properties,
and lighting. Our method is capable of attaining state-of-
the-art relighting quality after only ∼1 hour of training in a
single NVIDIA A100 GPU.

1. Introduction

The idea of creating realistic and immersive digital envi-
ronments has piqued the imagination of countless science
fiction authors, science fiction directors, and scientists. In
the past few years, the fields of computer graphics and com-
puter vision have advanced so much that we are capable of
creating photo-realistic environments [6, 21, 26], as well as
capturing real-world environments in a way that allows us
to render new photo-realistic views [24, 29]. However, the
creation of digital twins [9] of objects that can be integrated
within photo-realistic environments still requires artists to
meticulously hand-design realistic object meshes, materi-
als, and lighting. While this is feasible for generating a
few scenes, large-scale digitization requires automatic ways
of reconstructing real-world objects along with their corre-
sponding material properties.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 1. We visualize the lighting, material properties, and geom-
etry predicted by our model in addition to several relighting pre-
dictions of the ‘materials’ scene. Our method is capable of simul-
taneously predicting high-frequency illumination, material prop-
erties (albedo, metalness, and roughness), and geometry.

In this work, we address the problem of object inverse
rendering: extracting object geometry, material properties,
and environment lighting from a set of posed images of the
object. Inverse rendering enables the seamless integration
of virtual objects into different environments with varying
illumination conditions from simple image captures taken
by commonplace camera sensors.

Neural rendering methods, such as Neural Radiance
Fields (NeRF) [1, 18, 31], have revolutionized novel view
synthesis, 3D reconstruction from images, and inverse ren-
dering. By directly modeling outgoing radiance at each
point in 3D space, NeRF methods excel at accurately recov-
ering scene geometry and synthesizing novel views. How-
ever, a drawback of this approach is that the learned ra-
diance representation entangles environment lighting with
the rendered scene’s properties, making it challenging to re-
cover material properties and illumination. Due to the suc-
cess of NeRFs in reconstructing scenes, several works have
proposed modifications to enable inverse rendering [3, 16,
27]. These works build upon NeRF by decomposing radi-
ance into a function of illumination and material properties
but differ in their ways of modeling lighting and reflections.

1

We follow suit with the main goal of efficiency without sac-
rificing reconstruction quality or the ability to recover high-
frequency illumination details.

To achieve these goals, we rely on the split sum approx-
imation [11], which is commonly used in efficient image-
based lighting techniques and has been successfully ap-
plied for inverse rendering before [3, 20]. This approxima-
tion involves splitting the surface reflectance equation into
two factors: one responsible for pre-integrating illumina-
tion and the other for integrating material properties. Our
first key insight is that this separation allows us to estimate
pre-integrated illumination using a Multi-Layer Perceptron
(MLP). This manner of modeling the pre-integrated illu-
mination function is inspired by the modeling of radiance
fields, which model a complex integral of lighting and ma-
terial properties using an MLP. Correspondingly, our illumi-
nation representation inherits beneficial properties observed
with the modeling of radiance fields such as smoothness.
To ensure accurate learning of illumination, we introduce a
novel regularizer based on Monte Carlo sampling.

However, the split sum approximation on its own does
not take into account self-occlusions. This hinders the es-
timation of material properties since shadows tend to be
incorrectly attributed to being part of an object’s albedo.
Thus, we derive an occlusion factor to correctly account for
self-occlusions. This factor is then approximated via Monte
Carlo sampling and used to supervise an MLP dedicated to
predicting self-occlusions.

Altogether, our method is capable of attaining state-of-
the-art relighting results with under an hour of training on a
single NVIDIA A100 GPU.

Contributions. We claim the following contributions:
(i) We propose a novel representation for representing

pre-integrated illumination as a single MLP along with a
corresponding regularization to ensure accurate learning.

(ii) We derive a method for approximating the effect of
self-occlusions on pre-integrated lighting and use it to su-
pervise an occlusion MLP.

(iii) We demonstrate the effectiveness of our method in
extracting environmental lighting and material properties,
achieving state-of-the-art relighting quality with under one
hour of training on a single NVIDIA A100 GPU.

2. Related Work

The problem of digitizing real-world objects and environ-
ments has long been a subject of active research in computer
vision and computer graphics. We approach this problem
through the lenses of neural rendering and neural inverse
rendering; paradigms with lots of recent attention. We now
provide a brief overview of related works in these areas.

2.1. Neural Rendering and 3D Reconstruction

Novel view synthesis is the task of rendering new views of
a scene given a set of observations of the scene. Neural Ra-
diance Fields (NeRF) [18] and its variants [1, 4, 19, 25, 31]
have demonstrated remarkable success in the task of novel
view synthesis. NeRF directly models the volumetric scene
function by predicting radiance and density at each 3D point
in space while supervising learning with a photometric re-
construction loss. Due to its success in implicitly learning
accurate 3D reconstructions, several works have branched
out to reconstruct accurate meshes through neural render-
ing [22, 28]. Signed Distance Function (SDF)-based meth-
ods [12, 33, 34, 37] model density as a function of the SDF
to obtain well-defined surfaces. By increasing sharpness
during training in the conversion from SDF to density these
methods can transition from volume rendering to surface
rendering as they train. While effective, these methods suf-
fer from entangled representations of scene geometry, ma-
terial properties, and lighting. Our work follows the surface
rendering pipeline proposed in [33], but reformulates the ra-
diance prediction in a manner that disentangles environment
lighting and material properties.

2.2. Neural Inverse Rendering

The task of inverse rendering consists of estimating the
properties of a 3D scene such as shape, material, and light-
ing from a set of image observations, and is a long-standing
problem in computer graphics. The success of neural ren-
dering methods for novel view rendering and 3D recon-
struction has led to a variety of works [2, 3, 14, 16, 20,
27, 38, 39, 41, 42] exploiting neural rendering for inverse
rendering. Due to the challenging nature of this prob-
lem, a wide variety of simplifying assumptions have been
adopted. Some works simplify the modeling of lighting by
using low-frequency representations such as spherical gaus-
sians [2, 10, 27, 36, 38, 41, 42] or low-resolution environ-
ment maps [2, 38, 42]. While this approximation generally
allows for closed-form solutions of the rendering integral, it
does not capture natural high-frequency illumination. Our
work leverages the split sum approximation [11], proposed
for real-time rendering of image-based global illumination
to enable the learning of high-frequency environment light-
ing. The split sum approximation has been adopted by sev-
eral inverse rendering methods [3, 14, 20]. Pre-integrated
lighting has been represented as an autoencoder-based illu-
mination network [3, 13], as a set of learnable images for
different roughness levels [17, 20], and as an MLP with
integrated spherical harmonic encoding as input [14]. In
contrast, we propose modeling pre-integrated lighting as
the output of an MLP paired with a novel regularization,
which ensures the network correctly learns to represent pre-
integrated lighting. An issue arising from the split sum ap-
proximation is that the pre-integration is blind to geometry

2

Figure 2. Proposed Architecture. A spatial network is used to
map spatial coordinates into geometry, material properties, occlu-
sion, and spatial features. The predicted geometry is used along
with predicted roughness by the pre-integrated illumination net-
work to predict both pre-integrated specular and diffuse terms. Fi-
nally, the pre-integrated specular and diffuse terms are combined
with material properties along with an extra corrective term to pro-
duce the output radiance.

and thus does not account for the occlusion of light sources
due to geometry at different locations throughout the scene.
Our work tackles this issue by supervising the prediction of
ambient occlusion through Monte Carlo sampling.

3. Methodology
Our method aims to extract a scene’s geometry, material
properties, and illumination from a set of posed images
of the scene. We accomplish this by incorporating a de-
composed formulation of radiance into a surface render-
ing pipeline. In the following sections, we begin with an
overview of the surface rendering pipeline. We then detail
the physically-based radiance formulation, which allows us
to decompose radiance into illumination and material prop-
erties. Next, we describe our proposed MLP representation
for illumination along with the additional loss term it re-
quires. Afterward, we derive a method for estimating an
occlusion factor to account for visibility within the split sum
approximation. Finally, we describe additional regulariza-
tion used to facilitate learning.

3.1. Overview of Neural Rendering

Neural volume rendering relies on learning two functions:
σ(x; θ) : R3 7→ R which maps a point in space x onto a
density σ, and Lo(x, ωo; θ) : R3 × R3 7→ R3 that maps
point x viewed from direction ωo onto a radiance Lo. The
parameters θ that define the density and radiance functions
are typically optimized to represent a single scene by us-
ing multiple posed views of the scene. To learn these
functions, they are evaluated at multiple points along a ray
r(t) = o − tωo, t ∈ [tn, tf], defined by the camera origin
o ∈ R3, pixel viewing direction ωo, and camera near and

far clipping planes tn and tf . A pixel color for the ray can
then be obtained through volume rendering via:

Ĉ(r; θ) =

tf∫
tn

T (t) σ̂(r(t)) L̂o(r(t), ωo) dt, (1)

where T (t) = exp

−
t∫

tn

σ̂(r(s)) ds

 . (2)

In practice, a summation of discrete samples along the
ray is used to approximate the integral. This volume ren-
dering process allows us to supervise the learning of im-
plicit functions Lo and σ, in a pixel-wise fashion through
the reconstruction loss:

Lrec(R; θ) =
1

|R|
∑
r∈R

∥∥∥C(r)− Ĉ(r; θ)
∥∥∥2
2
, (3)

where R is a batch of rays generated from a random subset
of pixels from training images.

The learned geometry can be improved if, instead of di-
rectly predicting density σ, a signed distance field (SDF) is
learned and then mapped to density. To this end, we fol-
low the SDF formulation proposed in NeuS [33]. Learning
a valid SDF requires the use of an additional Eikonal loss
term LEik. For more details, please refer to [33].

Since volume density σ depends only on a point’s posi-
tion in space while output radiance Lo depends on both po-
sition and viewing direction, neural rendering networks are
typically split into a spatial network and a radiance network.
As shown in Figure 2, we maintain the spatial network to es-
timate density along with additional material properties but
rely on a physically-based [23] radiance estimation instead
of a radiance network.

3.2. Physically-Based Rendering

Given knowledge of a scene’s geometry, material proper-
ties, and illumination, it is possible to model the outgoing
radiance Lo(x, ωo) reflected at any position x of an object’s
surface in direction ωo by integrating over the hemisphere
Ω defined by the surface’s normal n using the reflectance
equation:

Lo =

∫
Ω

(kd
a

π
+ fs)Li⟨ωi,n⟩dωi, (4)

where Li is the incoming radiance, a is the material’s dif-
fuse albedo, and kd and fs are material properties depen-
dent on the object’s Bidirectional Reflectance Distribution
Function (BRDF). For clarity, we omit from the notation
the dependency of incoming radiance on ωi as well as the
dependency of material properties on position x. This inte-
gral can be split into its diffuse and specular components.

3

G
T

Roughness = 0.0 Roughness = 0.2 Roughness = 0.5 Roughness = 1.0

O
ur

s

Figure 3. Pre-Integrated environment illumination. We visualize the pre-integrated illumination for varying roughness values along with
our model’s prediction for the ‘toaster’ scene. Our pre-integrated illumination MLP is capable of accurately approximating pre-integrated
lighting across roughness values thanks to our novel Monte Carlo regularization loss.

Ld = kd
a

π

∫
Ω

Li⟨ωi,n⟩dωi, Ls =

∫
Ω

fsLi⟨ωi,n⟩dωi.

(5)
Computing the specular integral for any general scene is

not possible, and approximating it directly using a Monte
Carlo simulation is very expensive. Thus, image-based
lighting methods often employ the split sum approximation
to calculate specular lighting by splitting the integral into
two components: one containing the incoming light Li, and
one that only depends on material properties independent
of lighting. Modeling the BRDF using the Cook-Torrance
GGX [30, 32] model leads to the following approximation
for Ls:

Ls ≈

∫
Ω

D(ωi, ωr, ρ)Li⟨ωi,n⟩dωi∫
Ω

D(ωi, ωr, ρ)⟨ωi,n⟩dωi

∫
Ω

fs⟨ωi,n⟩dωi, (6)

where D(ωi, ωr, ρ) is the microfacet normal distribution
function dependent on the direction of light reflection ωr

as well as the surface roughness ρ. The term on the right
can be pre-computed since it is independent of a scene’s
lighting. We follow the formulation from [11] and use a
two-dimensional lookup table with precomputed values F1

and F2. That is,

∫
Ω

fs⟨ωi,n⟩dωi = Fr ∗ F1 + F2,

Fr = F0 + (1− ρ− F0) ∗ (1− ⟨n,v⟩)5,
F0 = (1−m) ∗ 0.04 +m ∗ a,
kd = (1−m) ∗ (1− Fr),

(7)

where m and ρ are material properties describing the met-
alness and roughness of a surface point respectively. As

shown in Figure 2, we estimate a material’s metalness m̂,
roughness ρ̂, and albedo â as additional outputs from the
spatial network.

The term on the left in Equation (6) depends on the
lighting and the chosen microfacet distribution function
D(ωi, ωr, ρ), which must be approximated whenever the
environment lighting changes. In the following sections, we
refer to this term as g(ωr, ρ). For a given environment light-
ing, this term can be pre-integrated and is typically stored
in an environmental mipmap where different mipmap levels
correspond to varying values of microfacet roughness.

3.3. MLP Representation

We propose to estimate the pre-integrated lighting g(ωr, ρ)
at different roughness levels through a pre-integrated illu-
mination MLP ĝ(ω̂r, ρ̂). That is,

L̂s = ĝ(ω̂r, ρ̂) ∗ (F̂r ∗ F1 + F2). (8)

The pre-integrated lighting g(ωr, ρ) has two special
forms for the specific cases of ρ = 0 and ρ = 1.

g(ω, 0) = Li(ω), g(n, 1) =
1

π

∫
Ω

Li⟨ωi,n⟩dωi, (9)

This allows us to reuse the network ĝ to approximate Ld:

L̂d = ĝ(n̂, 1)k̂dâ, (10)

The predictions ĝ should accurately represent the en-
vironment lighting at different levels of roughness. We
achieve this through a loss term based on Monte Carlo esti-
mates ḡ of the original integral for varying roughness and
reflected directions using the predicted environment map
L̂i(ω) = ĝ(ω, 0).

4

LD(θ) =
1

|S|
∑
s∈S

∥ĝ(s)− ḡ(s)∥22 ,

ḡ(s) =

∑
ωi∈Ω

D(ωi, ωs, ρs)ĝ(ωi, 0)⟨ωi, ωs⟩∑
ωi∈Ω

D(ωi, ωs, ρs)⟨ωi, ωs⟩
,

(11)

where the set S consists of paired samples of directions ωs

taken uniformly on a sphere, and roughness samples ρs with
half the samples taken uniformly in the range [0, 1] and the
other half fixed to 1 to ensure correct learning of diffuse
lighting. The set Ω of light direction samples is also taken
uniformly on a sphere. While a different sampling could
lead to reduced variance, we utilize uniform spherical sam-
pling for ωi to be more computationally efficient. Uniform
spherical sampling allows us to share light samples across
the batch of predictions, thus reducing the number of eval-
uation calls to the light function ĝ(ω, 0). We visualize both
g and ĝ in Figure 3 for a specific scene.

3.4. Occlusion Factors

The split sum approximation does not consider the occlu-
sion of light sources due to geometry. To incorporate occlu-
sions, incoming light Li would need to be multiplied by a
binary visibility function Vi as follows:

LV
d = kd

a

π

∫
Ω

LiVi⟨ωi,n⟩dωi, (12)

with Vi taking a value of 1 when there are no occlusions and
0 when incoming light is occluded by geometry. The inte-
gral can be written as an occlusion factor od(x) multiplying
the split sum diffuse light term from Equation (5):

∫
Ω

LiVi⟨ωi,n⟩dωi =

∫
Ω

LiVi⟨ωi,n⟩dωi∫
Ω

Li⟨ωi,n⟩dωi

∫
Ω

Li⟨ωi,n⟩dωi,

LV
d = od(x)Ld, od(x) =

∫
Ω

LiVi⟨ωi,n⟩dωi∫
Ω

Li⟨ωi,n⟩dωi

(13)

We propose learning the occlusion factor od(x) with an
MLP. The learnt occlusion term ôd(x) is then supervised by
Monte Carlo estimates ōd(x) using the predicted geometry.

ōd(x) =

∑
ωi∈Ω

LiVi∑
ωi∈Ω

Li
, (14)

with ωi taken from a cos-weighted sampling of the hemi-
sphere around the normal at x. A similar derivation can

be followed for the specular occlusion term leading to the
following Monte Carlo estimate ōs(x):

ōs(x) =

∑
ωi∈Ω

LiVi⟨ωi,n⟩∑
ωi∈Ω

Li⟨ωi,n⟩
, (15)

with ωi sampled from the GGX distribution centered around
the normal at x. Given the Monte Carlo estimates ōd(x) and
ōs(x), we supervise the predicted occlusion terms ôd(x)
and ôs(x) as follows:

Lo(θ) =
1

|X |
∑
x∈X

w ∥ô(x)− ō(x)∥22 , (16)

where the sample set X is a random subset of the points
sampled for volume rendering, and the weights w are
the corresponding normalized volume rendering weights.
Weighting the loss function by the volume rendering
weights is required so that the occlusion prediction focuses
only on learning surface points.

The output radiance at each point in space is thus calcu-
lated as follows:

L̂o = γ(ôd ∗ L̂d + ôs ∗ L̂s), (17)

where γ is a function mapping the predicted output radiance
L̂o from linear to SRGB space.

3.5. Material Regularization

To better learn material properties, we introduce a soft reg-
ularizer to reduce the prediction of metallic materials. This
encourages the model to prefer explaining outgoing radi-
ance through albedo and roughness whilst still allowing the
prediction of metallic materials. We implement this regu-
larization as a weighted L2 loss with the same weighting as
for the occlusion loss in Equation (16). That is,

Lm(θ) =
1

|X |
∑
x∈X

w ∥m̂(x)|22 . (18)

4. Experiments
4.1. Baselines

We compare against Nerfactor [41], NVDiffRec [20],
NVDiffRecMC [8], NMF [16], and NeRO [14]. Due to the
differing evaluation methodologies among these works, we
train all baseline methods following publicly released code
and report metrics as detailed in the following sections.

4.2. Experimental setup

Datasets. We report results using the NeRFac-
tor [41] dataset along with extended versions of the
NeRF Blender [18] (Blender) and the RefNeRF Shiny

5

PSNR ↑ SSIM ↑ LPIPS ↓
avg. drums ficus hotdog lego avg. drums ficus hotdog lego avg. drums ficus hotdog lego

NerFactor 23.66 20.01 23.71 26.15 24.77 0.895 0.879 0.932 0.914 0.854 0.120 0.130 0.090 0.118 0.141
NVDiffRec 21.88 20.72 20.09 24.64 22.09 0.880 0.890 0.907 0.892 0.831 0.111 0.097 0.085 0.124 0.137
NVDiffRecMC 24.06 21.56 21.38 29.05 24.24 0.902 0.899 0.910 0.938 0.862 0.099 0.094 0.079 0.089 0.134
NMF 22.23 21.54 21.36 22.47 23.58 0.895 0.906 0.934 0.876 0.863 0.093 0.075 0.063 0.120 0.116
NERO 23.68 20.73 23.58 25.28 25.14 0.907 0.900 0.936 0.908 0.884 0.093 0.110 0.062 0.093 0.108
Ours 27.31 24.72 27.45 29.04 28.02 0.941 0.935 0.964 0.947 0.920 0.061 0.058 0.041 0.069 0.075

Table 1. NeRFactor Relighting Metrics. We evaluate the relighting quality of our method against the baselines using 20 test images and
8 low-frequency illumination maps from the NeRFactor dataset. Images are scaled by a per-channel factor before computing metrics. Our
method outperforms the baselines across all reconstruction metrics for all but one scene.

Blender Shiny Blender

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NVDiffRec 20.11 0.857 0.138 21.39 0.848 0.177
NVDiffRecMC 22.50 0.884 0.136 24.60 0.911 0.151
NMF 21.21 0.881 0.118 24.20 0.908 0.136
Ours 22.73 0.906 0.106 24.96 0.904 0.144

Table 2. Blender and Shiny Blender Relighting Metrics. We re-
port the average relighting reconstruction metrics across all scenes
for our extended Blender and Shiny Blender datasets. Metrics are
computed as the average of 20 test views across 7 high-frequency
illumination conditions. Images are scaled by a per-channel factor
before computing metrics. Our method outperforms the baselines
across all metrics for the Blender dataset and has a higher PSNR
for the Shiny Blender dataset.

G
T

City Courtyard Forest Night

O
ur

s

Figure 4. Qualitative Relighting Results. We render the pre-
dicted mesh and material properties from the ‘ficus’ scene using
Blender. Four different low-frequency environment maps from the
NeRFactor dataset are visualized.

Blender [31] (Shiny Blender) datasets. The NeRFactor
dataset consists of four synthetic scenes, where test images
are rendered under eight different low-frequency lighting
conditions. The Blender dataset consists of eight synthetic
scenes representing a mix of glossy, specular, and Lamber-
tian objects, while the Shiny Blender dataset consists of six
highly reflective synthetic scenes. To showcase the abil-

ity of our model to estimate high-frequency environment
lighting, we extend the Blender and Shiny Blender datasets
by rendering all objects under seven novel high-frequency
lighting conditions. All models are trained using 100 posed
images, and evaluated on 20 test images consisting of novel
views for each lighting condition.

Implementation Details. We utilize an efficient implemen-
tation of NeuS [7] as our surface rendering pipeline. We
train our models for 20, 000 steps using a warmup learning
rate scheduler for the first 500 steps followed by an expo-
nential decay scheduler. After every 2000 steps, we esti-
mate the current geometry by using marching cubes [15] to
extract the isosurface at SDF level-set 0. The estimated ge-
ometry is used with 64 samples for the Monte Carlo estima-
tion of occlusion factors. We use a random subset of 10%
of the points from volume rendering to supervise the oc-
clusion network to reduce time and memory requirements.
8129 light samples are used for computing illumination loss
Monte Carlo estimates. The final loss is calculated as a lin-
ear combination of the proposed losses, with the follow-
ing coefficients: λrec = 10.0, λD = 10.0, λo = 0.01,
λEik = 0.1, and λm = 0.001. We run all experiments on
a single A100 GPU for a total training time of ∼1 hour.

4.3. Relighting

We extract geometry from our model in the form of a trian-
gular mesh by using marching cubes [15]. At each predicted
mesh vertex, we estimate material properties in the form
of an albedo, metalness, and roughness. We then render
the predicted geometry using Blender’s [5] physically based
shader. Material properties across faces are obtained by
interpolating the predicted vertex material properties. For
baselines where explicit meshes and material properties are
extracted, we utilize the same Blender rendering pipeline to
compute relighting metrics. Otherwise, predictions are ren-
dered using the provided relighting methodology. Before
evaluating metrics, a per-channel scaling factor is computed
for each scene to compensate for the albedo-lighting ambi-
guity. We evaluate the predicted scenes for the NeRFactor,
Blender, and Shiny Blender datasets and report the average
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

6

PSNR ↑ SSIM ↑ LPIPS ↓
avg. drums ficus hotdog lego avg. drums ficus hotdog lego avg. drums ficus hotdog lego

NerFactor 23.53 20.75 22.05 27.75 23.58 0.910 0.878 0.923 0.937 0.903 0.109 0.132 0.098 0.093 0.112
NVDiffRec 22.96 19.66 22.64 28.35 21.20 0.898 0.880 0.924 0.944 0.842 0.125 0.120 0.099 0.108 0.172
NVDiffRecMC 23.83 20.40 22.14 29.61 23.17 0.917 0.895 0.921 0.950 0.903 0.115 0.116 0.106 0.101 0.136
NeRO 21.18 20.00 20.42 23.27 21.01 0.871 0.880 0.900 0.883 0.821 0.141 0.138 0.125 0.125 0.176
Ours 25.29 23.73 29.41 24.68 23.33 0.924 0.922 0.974 0.929 0.870 0.108 0.099 0.051 0.121 0.160

Table 3. Quantitative Albedo Metrics. We report the albedo reconstruction quality of our method compared to the baselines using the
NeRFactor dataset. Albedo is scaled by a per-channel factor to minimize error. On average, we outperform all baselines across all metrics.

GT (Albedo) Ours (Albedo) Ours (Occlusion) w/o Occ. Loss (Albedo) w/o Occ. Loss (Occlusion)

Figure 5. Occlusion Loss Visualization. We visualize the albedo and occlusion predicted by our method with and without the proposed
occlusion regularization loss. When no regularization is used, we observe that the occlusion prediction fails at disentangling shadows from
the albedo. Additionally, darker materials might wind up with lighter albedos due to occlusion overcompensation.

Relighting Albedo

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Ours 27.31 0.941 0.061 25.29 0.924 0.108
Ours (w/o Occ. Avg.) 27.25 0.941 0.061 24.73 0.919 0.109
Ours (w/o Occ. Loss) 26.40 0.936 0.064 22.13 0.900 0.122
Ours (w/o Met. Reg.) 26.56 0.936 0.066 23.92 0.916 0.123
Ours (Mipmap) 27.81 0.944 0.058 25.43 0.924 0.114

Table 4. NeRFactor Ablation Results. We report relighting and
ablation metrics for different variations of our methodology on
the NeRFactor dataset. While employing a mipmap representa-
tion for illumination provides improved quality for both relighting
and albedo, it comes at a cost of ∼36% higher training time. All
other proposed components of our method improve quality.

Index Measure (SSIM) [35], and Learned Perceptual Im-
age Patch Similarity (LPIPS) [40] in Table 1 and Table 2.
Metrics are reported as an average across 20 test images
and across all illumination maps for each dataset. This met-
ric gives an aggregated performance measure for geometry
and material property estimation. While it does not measure
performance for estimating illumination, an accurate illumi-
nation estimation is essential for recovering material prop-
erties. It can be observed that our method outperforms all
baselines by a significant margin. Additionally, we provide
renderings of our method’s predictions for the NeRFactor
dataset’s ficus scene under four different illumination con-
ditions in Figure 4.

4.4. Albedo

In addition to overall relighting quality, we evaluate the
ability of our method to recover albedo. We report recon-
struction metrics on the predicted albedo in Table 3. As
with the relighting metrics, we apply a per-scaling factor
to the albedo predictions before computing reconstruction
metrics. Metrics are reported as an average across all 20
test images for each scene in the NeRFactor dataset. We ex-
clude results from NMF [16] since the albedo in their light-
ing formulation is not comparable to that of the other meth-
ods. Thanks to our proposed occlusion factor, our method
is on average better able to reconstruct albedo.

5. Discussions
5.1. Ablations

Occlusion loss. We visualize the effects of the proposed oc-
clusion loss in Figure 5. Learning an occlusion factor with-
out supervision leads to errors in the albedo predictions due
to the inability to disentangle shadows from object color. By
explicitly supervising an occlusion factor we observe bet-
ter albedo color predictions such as visualized in the blue
box in the hotdog example, and all boxes in the drums ex-
ample. Additionally, shadows are better disentangled from
albedo as observed in the red and green boxes for the hot-

7

D
ru

m
s

GT Ours Ours (Mipmap) NVDiffRec NVDiffRecMC NMF

M
at

er
ia

ls
H

el
m

et
T

ea
po

t

Figure 6. Blender and Shiny Blender Illumination Visualizations. We visualize the predicted illumination for our method, our method
using mipmap illumination, and baselines for two scenes in the Blender dataset and two scenes in the Shiny Blender dataset. Illumination
is scaled by a per-channel factor. Our proposed illumination inherits smoothness from the MLP representation but is still able to capture
high-quality details such as trees and buildings.

dog example. Quantitatively, we measure the importance of
adding the occlusion loss to our model in Table 4, where it
improves both relighting and albedo reconstruction.

Material Regularization. We measure the effect of the
material regularization in Table 4. By penalizing metal-
ness prediction, our model tries to explain output radiance
through roughness and albedo. However, as visualized in
Figure 1, the loss coefficient used is small enough to still al-
low our model to correctly predict metalness when required.

Occlusion Averaging. The occlusion factor we derive con-
sists of a per-channel factor that depends on estimated light-
ing. However, since both are being learned jointly, we ob-
serve that this can be a noisy process. We find in Table 4 that
relighting and albedo reconstruction both improve when we
supervise the occlusion factors ôd and ôs with their per-
channel averages instead. Assuming that all channels of the
occlusion factor are equal is equivalent to assuming that all
color channels of the lighting are equal, which slightly re-
duces the noise during training and uses fewer parameters.

MLP vs. Mipmap. We compare the effects of using
a mipmap representation for illumination against our pro-
posed regularized MLP. As reported in Table 4, the mipmap
representation leads to slight improvements in both relight-
ing and albedo reconstruction. However, these improve-
ments come at a cost of efficiency, since the average train-
ing time for our method is only 47 min., which increases to
64 min. with the mipmap representation - a 36% increase
in training time. As visualized in Figure 6, our method
produces smoother representations with less noise thanks
to the MLP representation. However, it is still capable of
capturing fine details such as trees in the ‘materials’ scene

and buildings in the ‘teapot’ scene. We expect further im-
provements in the rapidly advancing field of neural render-
ing will translate to better MLP representations and benefit
our method.

6. Conclusion and Limitations
In conclusion, we present a novel and efficient method for
inverse rendering based on neural surface rendering and the
split sum approximation for image-based lighting. Ow-
ing to our proposed integrated illumination MLP, we can
jointly estimate geometry, lighting, and material proper-
ties in under one hour using a single NVIDIA A100 GPU.
Additionally, we propose a way of supervising an occlu-
sion factor for diffuse and specular lighting such that self-
occlusions are accounted for with the split sum approxima-
tion. Altogether, our method is capable of producing high-
quality estimates of geometry, lighting, and material prop-
erties as measured by rendering objects under unseen views
and lighting conditions.

However, due to the highly complex problem that in-
verse rendering presents, there are some limitations to our
method. The major assumptions we rely on come from
using image-based lighting and the split sum approxima-
tion. Image-based lighting assumes that light sources are
located infinitely far away from the scene, leading to errors
when this assumption is violated. While we have tackled
the problem of missing self-occlusions within the split sum
approximation, we ignore the lack of indirect illumination.
Additionally, we only consider the reflection of light and
are unable to model transmission and subsurface scattering
effects. We hope future works will be able to tackle some
of these limitations.

8

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields, 2021. 1, 2

[2] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Bar-
ron, Ce Liu, and Hendrik P.A. Lensch. Nerd: Neural re-
flectance decomposition from image collections. In IEEE
International Conference on Computer Vision (ICCV), 2021.
2

[3] Mark Boss, Varun Jampani, Raphael Braun, Ce Liu,
Jonathan T. Barron, and Hendrik P.A. Lensch. Neural-
pil: Neural pre-integrated lighting for reflectance decompo-
sition. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. 1, 2

[4] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, pages 333–350. Springer,
2022. 2

[5] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 6

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on
Robot Learning, pages 1–16, 2017. 1

[7] Yuan-Chen Guo. Instant neural surface reconstruction, 2022.
https://github.com/bennyguo/instant-nsr-pl. 6

[8] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg.
Shape, Light, and Material Decomposition from Im-
ages using Monte Carlo Rendering and Denoising.
arXiv:2206.03380, 2022. 5

[9] Yuchen Jiang, Shen Yin, Kuan Li, Hao Luo, and Okyay Kay-
nak. Industrial applications of digital twins. Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 379:20200360, 2021. 1

[10] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Song-
fang Han, Sai Bi, Xiaowei Zhou, Zexiang Xu, and Hao
Su. Tensoir: Tensorial inverse rendering. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 2

[11] Brian Karis and Epic Games. Real shading in unreal engine
4. Proc. Physically Based Shading Theory Practice, 4(3):1,
2013. 2, 4

[12] Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Tay-
lor, Mathias Unberath, Ming-Yu Liu, and Chen-Hsuan Lin.
Neuralangelo: High-fidelity neural surface reconstruction. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2023. 2, 12

[13] Ruofan Liang, Huiting Chen, Chunlin Li, Fan Chen, Sel-
vakumar Panneer, and Nandita Vijaykumar. Envidr: Im-
plicit differentiable renderer with neural environment light-
ing. arXiv preprint arXiv:2303.13022, 2023. 2

[14] Yuan Liu, Peng Wang, Cheng Lin, Xiaoxiao Long, Jiepeng
Wang, Lingjie Liu, Taku Komura, and Wenping Wang. Nero:
Neural geometry and brdf reconstruction of reflective objects
from multiview images. In SIGGRAPH, 2023. 2, 5

[15] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 6

[16] Alexander Mai, Dor Verbin, Falko Kuester, and Sara
Fridovich-Keil. Neural microfacet fields for inverse render-
ing, 2023. 1, 2, 5, 7

[17] Shi Mao, Chenming Wu, Zhelun Shen, and Liangjun Zhang.
Neus-pir: Learning relightable neural surface using pre-
integrated rendering. CoRR, abs/2306.07632, 2023. 2

[18] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2, 5, 12

[19] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics
(ToG), 41(4):1–15, 2022. 2

[20] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,
Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fi-
dler. Extracting Triangular 3D Models, Materials, and Light-
ing From Images. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 8280–8290, 2022. 2, 5

[21] Matthias Müller, Vincent Casser, Jean Lahoud, Neil Smith,
and Bernard Ghanem. Sim4cv: A photo-realistic simulator
for computer vision applications. International Journal of
Computer Vision, 126(9):902–919, 2018. 1

[22] Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In International Con-
ference on Computer Vision (ICCV), 2021. 2

[23] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically
Based Rendering: From Theory to Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edi-
tion, 2016. 3

[24] Konstantinos Rematas, Andrew Liu, Pratul P Srini-
vasan, Jonathan T Barron, Andrea Tagliasacchi, Thomas
Funkhouser, and Vittorio Ferrari. Urban radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12932–12942, 2022. 1

[25] Sara Rojas, Jesus Zarzar, Juan C. Pérez, Artsiom Sanakoyeu,
Ali Thabet, Albert Pumarola, and Bernard Ghanem. Re-
rend: Real-time rendering of nerfs across devices. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 3632–3641, 2023. 2

[26] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish
Kapoor. Airsim: High-fidelity visual and physical simula-
tion for autonomous vehicles. In Field and Service Robotics,
2017. 1

[27] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
Nerv: Neural reflectance and visibility fields for relighting
and view synthesis. In CVPR, 2021. 1, 2

[28] Jiaming Sun, Xi Chen, Qianqian Wang, Zhengqi Li, Hadar
Averbuch-Elor, Xiaowei Zhou, and Noah Snavely. Neural
3d reconstruction in the wild. In ACM SIGGRAPH 2022
Conference Proceedings, pages 1–9, 2022. 2

9

[29] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul Srinivasan, Jonathan T. Barron,
and Henrik Kretzschmar. Block-NeRF: Scalable large scene
neural view synthesis. arXiv, 2022. 1

[30] K. E. Torrance and E. M. Sparrow. Theory for off-specular
reflection from roughened surfaces∗. J. Opt. Soc. Am., 57(9):
1105–1114, 1967. 4

[31] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:
Structured view-dependent appearance for neural radiance
fields. CVPR, 2022. 1, 2, 6

[32] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Ken-
neth E. Torrance. Microfacet models for refraction through
rough surfaces. In Proceedings of the 18th Eurographics
Conference on Rendering Techniques, page 195–206, Goslar,
DEU, 2007. Eurographics Association. 4

[33] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
arXiv preprint arXiv:2106.10689, 2021. 2, 3

[34] Yiqun Wang, Ivan Skorokhodov, and Peter Wonka. Hf-neus:
Improved surface reconstruction using high-frequency de-
tails. Advances in Neural Information Processing Systems,
35:1966–1978, 2022. 2

[35] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4):
600–612, 2004. 7

[36] Haoqian Wu, Zhipeng Hu, Lincheng Li, Yongqiang Zhang,
Changjie Fan, and Xin Yu. Nefii: Inverse rendering for
reflectance decomposition with near-field indirect illumina-
tion. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4295–4304, 2023. 2

[37] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman.
Volume rendering of neural implicit surfaces. In Thirty-
Fifth Conference on Neural Information Processing Systems,
2021. 2

[38] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and
Noah Snavely. PhySG: Inverse rendering with spherical
gaussians for physics-based material editing and relighting.
In The IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2021. 2

[39] Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. Iron:
Inverse rendering by optimizing neural sdfs and materials
from photometric images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5565–5574, 2022. 2

[40] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.
The unreasonable effectiveness of deep features as a percep-
tual metric. In 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 586–595, Los
Alamitos, CA, USA, 2018. IEEE Computer Society. 7

[41] Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul De-
bevec, William T Freeman, and Jonathan T Barron. Ner-
factor: Neural factorization of shape and reflectance under
an unknown illumination. ACM Transactions on Graphics
(TOG), 2021. 2, 5

[42] Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei
Jia, and Xiaowei Zhou. Modeling indirect illumination for
inverse rendering. In CVPR, 2022. 2

10

SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry,
Illumination, and Material Estimation

Supplementary Material

7. Appendix
7.1. Derivation of Illumination Loss

In this section, we go through the derivation for the Monte
Carlo approximation of pre-integrated illumination ḡ used
in Equation (11). We first split the specular light integral
into two terms:

Ls =

∫
Ω

fsLi⟨ωi,n⟩dωi∫
Ω

fs⟨ωi,n⟩dωi

∫
Ω

fs⟨ωi,n⟩dωi. (19)

As mentioned in the main paper, the term on the right
can be precomputed so we focus on calculating an approxi-
mation for the term on the left.

g(ωr, ρ) ≈

∫
Ω

fsLi⟨ωi,n⟩dωi∫
Ω

fs⟨ωi,n⟩dωi
. (20)

This term requires us to make two approximations to the
Cook-Torrance BRDF fs

fs =
DFG

4⟨ωo,n⟩⟨ωi,n⟩
, (21)

to be able to approximate g as blurred environment maps
as per the split sum approximation. The first approxima-
tion on the BRDF consists of assuming the multiplication
between fresnel and geometric shadowing terms is approx-
imately equal to the dot product between the normal and
viewing directions: FG ≈ ⟨ωi,n⟩. Thus, we have that

fs ≈
D

4⟨ωo,n⟩
, g(ωr, ρ) ≈

∫
Ω

DLi⟨ωi,n⟩dωi∫
Ω

D⟨ωi,n⟩dωi
, (22)

as shown in Equation (6). We use the GGX (Trowbridge-
Reitz) microfacet distribution function for D:

D(ωi, ωo,n, ρ) =
ρ2

π(⟨h,n⟩2(ρ2 − 1) + 1)2
, (23)

where h is the half vector between ωi and ωo. The second
approximation assumes the normal and viewing directions
to be equal to the reflection direction. That is, n ≈ ωr and
ωo ≈ ωr. This leaves us with the following simplified D:

D(ωi, ωr, ρ) ≈
ρ2

π(1+⟨ωi,ωr⟩
2 (ρ2 − 1) + 1)2

, (24)

which now does not depend on either the normal or viewing
directions. Approximating both integrals with Monte Carlo
sampling and taking the same number of samples, we arrive
at the expression in Equation (11):

ḡ(ωr, ρ) =

∑
Ω

D(ωi, ωr, ρ)Li⟨ωi, ωr⟩dωi∑
Ω

D(ωi, ωr, ρ)⟨ωi, ωr⟩dωi
. (25)

7.2. Derivation of Occlusion Factor Approximation

We now go over the derivation of the occlusion factor Monte
Carlo approximation. As shown in Equation (13), we aim
to approximate the occlusion factors od(x) and os(x)

od(x) =

∫
Ω

LiVi⟨ωi,n⟩dωi∫
Ω

Li⟨ωi,n⟩dωi
, (26)

os(x) =

∫
Ω

DLiVi⟨ωi,n⟩dωi∫
Ω

DLi⟨ωi,n⟩dωi
, (27)

in order to supervise an occlusion factor network through
Monte Carlo sampling. As shown in the main manuscript,
we approximate od with Monte Carlo sampling by taking
the same number of samples for both integrals:

ōd(x) =

∑
ωi∈Ω

LiVi∑
ωi∈Ω

Li
, (28)

with ωi taken from a cos-weighted sampling of the hemi-
sphere around the normal n at location x. The probability
density function sampled is given by:

pdf(ωi) =
cos(θ)

π
, (29)

where θ is the angle between ωi and the normal. This cos-
weighted sampling aids in reducing variance by eliminating
the dot product factor from the estimation. A similar deriva-
tion can be followed for the specular occlusion term leading
to the following Monte Carlo estimate ōs(x):

11

ōs(x) =

∑
ωi∈Ω

LiVi⟨ωi,n⟩∑
ωi∈Ω

Li⟨ωi,n⟩
, (30)

where ωi is now obtained by sampling the GGX distribution
in order to reduce variance by eliminating the factor D from
both integrals. The probability density function sampled in
this case is the following:

pdf(ωi) =
D(ωi, ωr, ρ)

4
, (31)

which relies on the second approximation used in the previ-
ous section.

7.3. Network Implementation Details

We implement the spatial network using the progressive
hash grid encoding from [12]. The hash grid consists of
16 levels with 2 features per level and a hashmap size of
219 entries. The base grid spatial resolution is 32 voxels,
increasing by ∼1.32 each level. An MLP with a single 64-
channel hidden layer is used to produce spatial features with
13 channels along with the SDF predictions. Spatial fea-
tures are then input to an MLP with two hidden layers of
256 channels each and ReLU activations to produce ma-
terial property (metalness, roughness, and albedo) predic-
tions. A separate but identical MLP is used to produce oc-
clusion factor predictions. A sigmoid is used to map the
MLP outputs to the occlusion factor and material proper-
ties’ ranges of [0, 1]. The illumination network consists of
an MLP with five hidden layers with 256 channels each and
ReLU activations. Both the direction and roughness vec-
tors used as input to the illumination network are first posi-
tionally encoded as proposed in [18], using 10 frequencies
for the directional input and 5 for the roughness input. A
softplus function is used to map the illumination network’s
output to the range (0, inf).

7.4. Blender and Shiny Blender Relighting Results

We report per-scene metrics for relighting using the Blender
dataset in Tables 5 to 7, and using the Shiny Blender dataset
in Tables 8 to 10. Additionally, we present qualitative re-
sults of our method visualizing the learnt illumination, ma-
terial properties (metalness, roughness, and albedo), geom-
etry, and relit renderings from our method’s predictions for
the Blender dataset in Figures 7 to 14 and for the Shiny
Blender dataset in Figures 15 to 19.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 7. Qualitative results on the Blender ‘chair’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 8. Qualitative results on the Blender ‘drums’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 9. Qualitative results on the Blender ‘ficus’ scene.

12

PSNR ↑
avg. chair drums ficus hotdog lego materials mic ship

NVDiffRec 20.11 21.70 19.41 20.32 21.17 21.84 21.26 18.48 16.69
NVDiffRecMC 22.50 24.64 20.57 21.27 26.37 24.77 24.57 18.95 18.91
NMF 21.21 22.53 21.38 22.62 20.52 22.05 24.87 18.34 17.41
Ours 22.73 25.00 22.62 26.40 20.94 23.88 25.38 18.75 18.88

Table 5. Blender per-scene PSNR.

SSIM ↑
avg. chair drums ficus hotdog lego materials mic ship

NVDiffRec 0.857 0.886 0.852 0.902 0.894 0.834 0.866 0.927 0.695
NVDiffRecMC 0.884 0.918 0.877 0.902 0.930 0.865 0.904 0.924 0.750
NMF 0.881 0.908 0.890 0.934 0.890 0.863 0.913 0.926 0.722
Ours 0.906 0.937 0.908 0.952 0.914 0.901 0.930 0.937 0.769

Table 6. Blender per-scene SSIM.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 10. Qualitative results on the Blender ‘hotdog’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 11. Qualitative results on the Blender ‘lego’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 12. Qualitative results on the Blender ‘materials’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 13. Qualitative results on the Blender ‘mic’ scene.

13

LPIPS ↓
avg. chair drums ficus hotdog lego materials mic ship

NVDiffRec 0.138 0.099 0.134 0.083 0.141 0.141 0.132 0.092 0.283
NVDiffRecMC 0.136 0.084 0.135 0.093 0.118 0.147 0.112 0.097 0.306
NMF 0.118 0.093 0.103 0.066 0.135 0.108 0.081 0.087 0.271
Ours 0.106 0.065 0.096 0.050 0.116 0.097 0.075 0.077 0.269

Table 7. Blender per-scene LPIPS.

PSNR ↑
avg. car coffee helmet teapot toaster

NVDiffRec 21.39 24.85 18.29 19.07 29.39 15.36
NVDiffRecMC 24.60 24.25 22.93 22.86 32.70 20.25
NMF 24.20 24.58 17.88 27.48 30.66 20.41
Ours 24.96 26.86 18.70 21.51 38.13 19.62

Table 8. Shiny Blender per-scene PSNR.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 14. Qualitative results on the Blender ‘ship’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 15. Qualitative results on the Shiny Blender ‘car’ scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 16. Qualitative results on the Shiny Blender ‘coffee’
scene.

14

SSIM ↑
avg. car coffee helmet teapot toaster

NVDiffRec 0.848 0.913 0.799 0.848 0.972 0.705
NVDiffRecMC 0.911 0.917 0.921 0.908 0.983 0.827
NMF 0.908 0.917 0.843 0.946 0.982 0.849
Ours 0.904 0.942 0.883 0.877 0.993 0.827

Table 9. Shiny Blender per-scene SSIM.

LPIPS ↓
avg. car coffee helmet teapot toaster

NVDiffRec 0.177 0.102 0.237 0.209 0.046 0.290
NVDiffRecMC 0.151 0.101 0.195 0.182 0.039 0.241
NMF 0.136 0.092 0.208 0.142 0.032 0.206
Ours 0.144 0.072 0.204 0.195 0.017 0.234

Table 10. Shiny Blender per-scene LPIPS.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 17. Qualitative results on the Shiny Blender ‘helmet’
scene.

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 18. Qualitative results on the Shiny Blender ‘teapot’
scene.

15

GT Envmap Pred Envmap Metalness Roughness

GT Render Pred Render Albedo Normals

Courtyard Interior Sunrise Sunset

Figure 19. Qualitative results on the Shiny Blender ‘toaster’
scene.

16

	. Introduction
	. Related Work
	. Neural Rendering and 3D Reconstruction
	. Neural Inverse Rendering

	. Methodology
	. Overview of Neural Rendering
	. Physically-Based Rendering
	. MLP Representation
	. Occlusion Factors
	. Material Regularization

	. Experiments
	. Baselines
	. Experimental setup
	. Relighting
	. Albedo

	. Discussions
	. Ablations

	. Conclusion and Limitations
	. Appendix
	. Derivation of Illumination Loss
	. Derivation of Occlusion Factor Approximation
	. Network Implementation Details
	. Blender and Shiny Blender Relighting Results

